Category regions as new geometrical concepts in Fuzzy-ART and Fuzzy-ARTMAP
نویسندگان
چکیده
In this paper we introduce novel geometric concepts, namely category regions, in the original framework of Fuzzy-ART (FA) and Fuzzy-ARTMAP (FAM). The definitions of these regions are based on geometric interpretations of the vigilance test and the F2 layer competition of committed nodes with uncommitted ones, that we call commitment test. It turns out that not only these regions have the same geometrical shape (polytope structure), but they also share a lot of common and interesting properties that are demonstrated in this paper. One of these properties is the shrinking of the volume that each one of these polytope structures occupies, as training progresses, which alludes to the stability of learning in FA and FAM, a well-known result. Furthermore, properties of learning of FA and FAM are also proven utilizing the geometrical structure and properties that these regions possess; some of these properties were proven before using counterintuitive, algebraic manipulations and are now demonstrated again via intuitive geometrical arguments. One of the results that is worth mentioning as having practical ramifications is the one which states that for certain areas of the vigilance-choice parameter space (rho,a), the training and performance (testing) phases of FA and FAM do not depend on the particular choices of the vigilance parameter. Finally, it is worth noting that, although the idea of the category regions has been developed under the premises of FA and FAM, category regions are also meaningful for later developed ART neural network structures, such as ARTEMAP, ARTMAP-IC, Boosted ARTMAP, Micro-ARTMAP, Ellipsoid-ART/ARTMAP, among others.
منابع مشابه
New Geometrical Concepts in Fuzzy-ART and Fuzzy-ARTMAP: Category Regions
We introduce new geometric concepts regarding categories in Fuuy ART (FA) and Fuuy ARTMAP (FAM), which add a geometric facet to the process of node selection in the F2 layer by patterns. Apart from providing the means to better understand the training and performance phase of these -two architectures, the new concepts, namely the category regions, lead us to interesting theoretical results, whe...
متن کاملNew Geometrical Perspective of Fuzzy ART and Fuzzy ARTMAP Learning
In this paper we introduce new useful, geometric concepts regarding categories in Fuzzy ART and Fuzzy ARTMAP, which shed more light into the process of category competition eligibility upon the presentation of input patterns. First, we reformulate the competition of committed nodes with uncommitted nodes in an F2 layer as a commitment test very similar to the vigilance test. Next, we introduce ...
متن کاملEllipsoid ART/ARTMAP Category Regions for the Choice-by- Difference Category Choice Function
In the recent past category regions have been introduced as new geometrical concepts and provide a visualization tool that facilitates significant insight into the nature of the competition among categories during both the training and performance phase of Fuzzy ART (FA) and Fuzzy ARTMAP (FAM). These regions are defined as the geometric interpretation of the Vigilance Test and the competition o...
متن کاملExperiments with Μartmap: Effect of the Network Parameters on the Network Performance
Fuzzy ARTMAP (FAM) is currently considered as one of the premier neural network architectures in solving classification problems. One of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the category proliferation problem. That is, Fuzzy ARTMAP has the tendency of increasing its network size as it is confronted with more and more data, especially if the dat...
متن کاملFuzzy ART Choice Functions
Adaptive Resonance Theory (ART) models arc real-lime neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2002